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ON THE DYNAMICS EQUATIONS OF SYSTEMS OF INTERCONNECTED BODIES* 

L.K. LILOV and V.A. CHIRIKOV 

A method is elucidated for deriving the equations of motions of mechanical SyStemS 
comprised of an arbitrary number of absolutely solid bodies containing both closed 
and open links. The method proposed is universal in nature and convenient for 
algorithmization and programming on electronic computers. 
The method proposed in /l/ is most general for the description of systems of many 
bodieswith the structure of interconnections with closed links. Its essential dis- 
advantage is, however, the lack of a formal apparatus to describe the couplings in 
the system and the incomplete utilization of information about the relative motion 
in the adjacent bodies due to discarding part of the hinges during transformation 
of the system with closed links into a system with the structure of a tree. 
The method elucidated below to derive the dynamical equations can be applied to 
mechanical systems that are sets of bodies connected by holonomic and non-holonomic, 
scleronomic, and rheonomic constraints. It is assumed that the system of intercon- 
nections is such that a system that does not contain a closed link can be obtained 
by a single slash of the pertinent bodies, To simplify the exposition, the method 
is demonstrated on scleronomic holonomic systems, often encountered in practice. 
The proposed method is a development of the formalism elucidated in /2/. 

1. Description of the system structure. A holonomic system consisting of N + 1 
absolutely solid bodies arbitrarily connected by hinges and containing closed and open 
kinematic links is considered. An example of such a system is the "Coat-a-Matic" manipulator 
actuator (Fig.1). 

The most general meaning is embodied in the concept of a hinge. It is assumed that not 
more than onehingeexists between two bodies, and each hinge connects just two bodies of the 
system, which we later designate as neighbors. The motion of one body of the systemistaken 
as given, at first. The number 8 is ascribed to this body. The remaining bodies in the 
system are numbered from 1 to N arbitrarily. The hinges are also numbered arbitrarily from 
1 to n. The presence of closed loops is assumed in the system, consequently, n > N. 

We represent the system structure by a graph, whose vertices si (i = 0, 1, ..,, N) symbolize 
the bodies of the system, and the edges ua(a = 1, 2,..., n) are the hinges. The primary graph 
of the manipulator actuator tFig.1) is repxesented in Fig.2 where one of the possible methods 
of numbering the system bodies and hinges is also shown. 

By opening the closed loops, we transform the primary graph into a graph with the struct- 
ure of a tree. We assume such an opening can be made by a single bifurcation of appropriate 
vertices of the primary graph. Upon bifurcation, two images of one vertex remain that are 
not connected directly, and belong to different branches of the open graph obtained. The new 
graph, which we shall designate secondary, evidently has as many new vertices as bifurcations. 
We ascribe numbers from N-f- 1 to n to the new vertices. The transformation of the graphin 
Fig.2 into an open graph can be accomplished by bifurcation of the vertices with numbers 1 
and 3, say, (Fig.3a), or with numbers 2 and 3 (Fig.3b). The so-called path between two 
vertices is determined uniquely in the secondary graph. This is such a sequence of vertices 
and edges connecting the vertices under consideration that no hinge is negotiated twice. 

We orientate the primary graph representing the system structure by selecting a definite 
direction, denoted by an arrow, on each edge. In selecting the direction on the edge, we 
start from which of the two adjacent bodies connected by this hinge will be taken as basis 
with respect to which we will consider the relative motion of the neighboring body. The 
direction to the edge is given from the vertex mapping the basic body to the vertex mapping 
the neighboring body for the hinge under consideration. One of the possible orientations of 
the edges of the graph is represented in Fig.2. We later call the oriented edges arcs. 
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Fig.2 

Fig.3 

The osientation of the primary graph is carried over without variation to the open second- 
ary graph. The orientation of the secondary graph governs the following two functions: i* (a) 

and i-(a) of argument a(a = $,&...,n) denoting the arc number, The function i' (a)(i-(a)) deter- 
mines the number of the vertex from which the arc u, starts (terminates). For the graphs in 
Fig.3 the values of these functions equal, respectively 

af 
i' i a) 

12 3 4 5 6789 10 1112 
0 i 2345272 9 8 10 

i- a) 12345 678 9 10 11 I2 

b) i+(a) 0 12 3 4 511 711 9 8 10 
i_(a) 12 34 56 7 8 9 10 t 12 

By using the functions i+(a) and i-(a) we define the foll.owing quantities: 

I 

-I-i* if i=i+(a) (i=0,1,...,n), 

sia= -1, if i=r(a) (a=1,2,...,n), 
0 otherwise 

-if, if Z&S belongs to the path between q and s+ and is directed to so, 

Toi= 

j 

-$,if ?z~ belongs to the path between SO and St and is directed from SO, 

0 otherwise 
(a, i = 1, 2, ..*, n). 

These quantities determine the matrices 
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Let S+be the matrix obtained from Sif all its elements, -i, are replaced by 0. We 
also introduce the matrix W of dimension N X n with the elements Wrm: + 1, if k=m, 

-& if k is the number of the bifurcatedvertex in the primary 
wk, = graph, and m isthe number of the new vertex in the secondary graph. 

0 otherwise 

The nonzero elements of the matrix Wfor the graphs in Fig.3 have the form 

and 
w,, = w,, = . . . = w,,,,, = 1 

We extract the sub-matrix I consisting of rows in Wcorresponding to the numbers of all 
bifurcated vertices of the primary graph, from W. For the graphs under consideration in Fig. 
3, I has the form 

a) iooooooooo--10 
II 0 0 1 0 0 0 0 0 0 0 0 -4 il 
0100000000-10 
00 100000000 -i 

We also form a matrix Hwhich is obtained from Wif we replace the nonzero elements by 
l/2 in its rows corresponding to the number of all the bifurcated vertices of the primary 
graph. 

Finally we denote the matrix obtained from Wif each of its elements is takeninabsolute 
value by 1 W I. 

2. Kinaatics of the SyStem. We will use the mathematical apparatus elucidated in /2/ to 
describe the kinematics of the system. We introduce a local orthonormal reference point el(Q, 
e&i),&), with origin at the center of mass Cr of the body (I= 1,2,...,N) (Fig.4) into each 
body of the system under consideration. The point C, is arbitrarily chosen for the body of 
number 0. We denote the radius-vector of the point Ci with respect to the inertial originat 
the point 0 by Rf(l = 0,1,..., N). We introduce the vector z, connecting two fixed points at 
adjacent bodies for the hinge (I and directed exactly as is the arc U, into the primaryorient- 
ed graph mapping the system, to describe the relative motion in hinge number a(& = 1,2, .._,n). 
The mentioned points are called hinge points fFig.4). 
e%(i), e#))T by e(i). 

We later denote the column matrix (e&*1, 

Fig.4 

It is convenient to work 
with a new fictitious system 
whose structure is representedby 
the open secondary graph rather 
than with the original systemin 
considering the kinematics of the 
system. The former system is ob- 
tained if the body to which the 
bifurcated vertices of the prim- 
ary graph correspond upon opening 
of all the closed loops, is im- 
aginatively bifurcated. Thebody 
is bifurcated with complete geo- 
metric identity conserved between 
the original and the image. In 
particular, the centers of mass 
and basis reference points are 
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identically arranged in both bodies. Joining both bodies with the rest and t31ei.r niir&fring 
are represented in the secondary graph. Here a certain part of the hinged points is conserved 
inanYoftheimages,namely,thehingepointsofthosehingeswhosecorrespondingarcs inthesecond- 
ary graph connect the vertex corresponding to this image to the other vertices. The rest cf 
the hinge points of the original figure in the other image. We consequently obtain a system 
consisting of n + 1 bodies and having no closed loops. We callthissysteman extended system. 

The orientation of the reference point e@*@) relative to the reference point eCi-Ca)) is 
given by the transition matrix G, 

&'-(a)) =G,eti+(a,) 

The quantities 2, and G, are functions of the coordinates qa = (Qa1t Qaz. . . . . Van,)?‘ (n, < 6):. 
giving the relative motion in hinge number Q. For the bodies of the extended system the co- 
ordinate systems are located exactly as in the corresponding bodies of the system. It can be 
shown that the matrices for the transition of Gij from the coordinate system of the body j to 
the coordinate system of the body i 

e(i) =Gije(?) 

are related to the matrices G, introduced, by means of the dependence 

that follows from the formulas 

The relative translation velocity z," and the acceleration z,-, the relative angularveloc- 
ity aZ, and the angular accelerations 52,"(a = I,&..., s) for which the following expressions are 
true /2/: 

zc = Z,%ld> z~=z;Tq~"+q;Ts~q,' 

9, = pclTqa’r !A0 = pa=qa- + 4bTP*‘Qa’ 

axe also the characteristics of the relative motion of adjacent bodies, where ’ =a t Pa are 

vector column matrices of dimension n, x 1 whose elements are the vectors 

@a%= *t 

(i = 1, 2, Y’. ., 

Pn = (P&S Paz, f . . I psz*y 

n,; a = 1, . . ., n) 

while z,*, pa' are vector matrices of dimension n, X n, with the elements 

8P.i 
(za”)ij=8%Lv (Pi)ij=ap,jl 

oqoiaqoj 
(i, j = 1, 2, . . ., 72,; a = 1, * . ., 12) 

We denote the local radius-vectors of the hinge points by c+++ anci c~-c~)~ (Fig.41 . In- 
troducing the matrices C, C, and C* with the elements 

(C)i,= Si&iClr (&)a = SDnCDa 

(C*)ia=&, (i,a=l,Z,...,n) 

we obtain the following expression for the column matrix of the radius-vectors Ri(i = I,&.. 

at n) of the mass centers of the bodies in the extended system /2/: 

R = R,f, - (CT)T 1,-- TTz - (COT)~ 

Here R = (&,&,..., R,)T and 1, = (f,$,..., j)r is a column matrix of dimension n X 1 all of 
whose elements are ones. 

Performing the necessary operations on the block matrices, we obtain dependences for all 

the other absolute kinematic characteristics of the extended system 

R" =I Tr fdlag pT x (C -f- C*) - diag z’lT q” + II (2.1) 

Cl%= -Pdiagprq' +o& 
0' = -T T (diag pTq” + I) f c~0.1, 
bR = - TT [(C + C*)T x TT diag pT Jr diag G”] Pq 
&CD- TT diagpT6q 
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where 

Here wi is the vector of the absolute angular velocity of the body numbered i in the ex- 
tended system, and the vectors &R1 and &n, describe the absolute variations of the position 

and orientation of this body. The quasi-diagonal matrix along whose prinCipa1 diagonal the 

elements A,, . . . . -4, of the quantity A are located, is denoted by the symbol diag A. These 
elements can be scalars, vectors, matrices, tensors, etc. For instance, the vector matrices 

(Pal, Pam . . ..p_.) are located on the principal diagonal of the quasi-diagonal matrix diagp', 
and therefore its dimension is n X (a + ??a i- . . . -j-n,,). The components of the vector matrices 
I, w,g,h are: 

&z=qbTP,'Ka' + W+(a) X P@=Q,'V w, = qaSTz,“q,. 

&= %+(a) X (W+(a) X Ci+(ad -*-(a) X (W-(a) X et-(aha) 

ha=Zm+(cz> X sag, -I- %+(a) X (W++(O) X 2,) (s=j,2,. * *> n) 

In order to go from the kinematics of the extended system to the kin~aticso~~eoriginal 
system, it is necessary to write the equations of the constraints expressing the condition 
that the open loops are closed. This evidently the condition for the agreement of two images 
of the bifurcated bodies, which reduces to the requirement of equality of the radius-vectors 
of their mass centers and equality of the transition matrix between them to the unit matrix. 
If i and k are the numbers of two images of one bifurcated body, then these conditions are 
written thus 

Rj- Rk = 0, Gfk = E (2.2) 

q=(qlT,q*T,...,q,T)T, a,=(%% ,..., a),)T 
6R=(SRI,6Ra,...,S%)T, 6n=(6acl,&ca,...,Sac,,)~ 

p=(p~r,~a=,...,p~=), z'=(z;~,z:, . . ..i$+)= 

u=-TT[C+C*)=x (~~f-~'~~)+w~g~h]+ R;l,-(C&T 

It can be shown that these conditions are expressed for the whole system by the following 
matrix formulas: 

zTr(C=I,+z+COr)=O (2.3) 

fi @T% WE (i=t,Z,...,n-NN) (2.4) 
cm=]. 

The scalar equations corresponding to this system can be obtained by projecting each vec- 
tor equation on certain coordinate system. For instance, the coordinate systemofbodynumber 

0 can be taken, but the coordinate system, of a body taken from the loop, whose closedness 
this equation expresses, is more convenient. In particular, the coordinate system of the 
bifurcated body can be used. 

3. Derivation of the equations of motion. The i-th body of the system altersits 
position in space during variation of the generalized coordinates, which results in displace- 
ment of the mass center by the quantity 6R1 and rotation of the body around an axis passing 
at an infinitesimal angle through ct. The direction of the axis and the magnitude of the 
angle of this rotation are determined by the infinitesimal vector &cl. 

Using the D'Alembert principle, we find the following expression for the virtual work 
performed by the forces acting on the system and by the inertial forces 

6R~=.(F*-mmR”‘)_t6~~=.(M*--)=0 (3.1) 
R'=(Rr,Rg,...,Rjv)=), 6n8=(sq,Sn,,...,Gn~)T 

L'=(L1',Le',...,LN')=, F*=(FI*,Fl*,...,FN*)T 

M!'=(M,*,MB*, . . ..MN*)T 

The superscript s denotes that the quantity corresponds to bodies of the initial system. 
The matrix mhas the elements sttl = 61,ml(i,j=l,..., N), where 5i, is the Kronecker delta, mt 
is the mass of the i-th body of the initial system, Lt.= J~*CUS +@t X Jl*+ is the absolute 
derivative of the moment of momentum of the i-th body relative to its center of mass, Jt is 
the central tensor of inertia of this body, F*f is the resultant of all the forces acting on 
the body of number i, and M*, is the resultant moment of all the forces acting on the i-th 
body relative to its center of mass (i = 1, 2, . . .) NJ. 

Quantities related to the second images of the bifurcated bodies are not in (3.1). In 



388 L.K. Lilov and V.A. Chirikov 

order to use the kinematics encompassing the bifurcated body constructed in the previous see- 
tion, it is necessary to express 6R” and 6nS in terms of 6R and Sn. To do this we use tna 
matrix N introduced above 

There remains to find the expressions for the block forces and moments. Let F; be the 
resultant of all the external forces acting on the body with number i, and Rlftheir moment 
relative to the center of mass Cj(i -.= l,Z,...,N). Letting a& denote the internal forceinthe 
hinge number a that acts on the body with number i*(a) and performs virtual work, we find the 
following expression for the resultant of the internal forces acting on a body with number i 
and performing virtual work: 

We then obtain for F” 

F*==F+/WJSX 

F = (F,, Fiji . . . , Fx)~, S = (x,, x2, . . . . q.y 

We also introduce into hinge number a the moment of the internal forces Y, that perform 
virtual work and act on the body number i'(a), taken relative to the end of the vector z,. It 
can be shown that 

M* = M +- 1 w 1 SY + 1 w / (C i_ c*) x x 
M = (M,, ML,. . ., M,v)T, Y = (Y,, Yz, . , . , Y,)T 

Now, if the dependences obtained are substituted into (3.1), we obtain an equalityofthe 
form 

&Jr (Aq”-- B) = 0 (3.2) 

A= [diag pT x (C + C*)- diagz']THT .mHTT [diag pT )i; 
(C fC*)- diagz'jf +- diag pTHT. diag J +ffTT diagp* 

3 = [diag pT x (C + C*) - diag z’j THY. (F - m Hu) -- 
dia~pT~~.[~-V+diagJ.(~T~E-~~~~)I- 
diag z’TfP 1 W / S. X - diag pTHT 1 W 1 S - Y + 
diagpT.[(C~C*)TNTIWIS-HHTj~l((C+C*)l x X 

V=(ol x Jl.01, wz x J,.w~,...,w x J,~.wiv)~ 

When the system under investigationdoesnot contain closed kinematic chains, we obtain 
the equations of motion directly from (3.2), keeping in mind that the components 6q are arbit- 
rary and mutually independent. However, in the presence of kinematic constraints, the quant- 
ities 6q will already be dependent. We obtain these dependences by variating the equations 
of constraints (2.2) and (2.5). While the direct variation of the equation of constraints 
(2.3) is elementary, the direct variation of (2.4) is fraught with technical difficulties. In 
order to cope with this problem , we note that the equationsofconstraints (2.2) express the 
identical agreement of the bifurcated bodies during system motion. Hence, it follows, in part- 

icular, that changes in their mutual location in absolute space, which are determined by the 
change in the radius-vectors 6R and the angular position 8s are identically zero 

16R -= 0, Iib = 0 (3.3) 

After substituting the expressions for 6R and 6n from the last two relationships (2.1), 
we obtain 

6qT [diag pT x (C + C*) - diag z’] TIT = OT (3.4) 

dqT diag pTP == O* 

which are evidently variated versions of (2.3) and (2.4). Projecting each of these vector 

equations in the coordinate systems mentioned at the end of Sect.2, we obtain a system Of 

c(n - IV) scalar equations of the form 

@-R = OT (3.5) 

where O’f = (O,..., 0) is a matrix consisting of zeroes, of dimension 1 x 6fn - N) and k' is a 
matrix of dimension r x 6(n --IV), r = n, + n,+...+%. Let the rank of the matrix Kbe r-d. 
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Let Dzr be a minor of dimension (r-d) x (r-d), which realizes this rank. Furthermore, 
let Dir be a submatrix of the matrix Kconsisting of the remaining elements of thosecolumns 
in which the matrix D,T is located. Without limiting the generality, by renumbering the ele- 

ments of the column qif need be, it canbeassumed that the minor D,T is in the last (r-d) 

rows of the matrix K. Then (3.5) can be rewritten as 

SqWDIT + &#WD,T = OT (3.6) 

where q(r) denotes the first d elements of the column Q, and qcB) is the last (r - d), q = (dljT, 
qW)T. Evidently rl(') represents a complete set of independent, i.e., generalised,coordinate 
systems. Solving (3.6) for tia), we find 

6qW = -_D-‘,D,~qCS (3.7) 

If the trivial dependence 6q(') = E&f’) were added to (3.7), where Ed is the unit matrix of 
dimension (d X d), we obtain 

Ed 

Sq=Plsq(‘), p= 

I I 

. . . . . (3.8) 

- Da-ID1 

Since the constraints are stationary, then we have 

zR+=o, lo=0 

analogously to the dependence (3.3), and 

q’ = pqw 

analogously to (3.8). 

(3.9) 

(3.10) 

Differentiating (3.9) still again with respect to the time, we obtain 

ITT {[diag pT x (C $- C*) - diag z'lrq"-- (C + C*)r X (TTj - o,i,) - u) - g - h - CO”T} = 0 (3.11) 

ITT (diag pTq” + f) = 0 

Projecting (3.11) on the same axes as when obtaining (3.51, we write them in scalar form 

qeeTK = K, 

where K, is a matrix independent of q”. 
Let Q1rbe a matrix consisting of those columns of the matrix K, the correspond to the 

columns forming DIT and DaT, then 

Od 

q”=Pq”(‘)+@, Q= 

I I 

. . . , od=(O,o, . . . . 0)r (3.12) 

Da-IQ 

where Od is a matrix of dimension d X 1 consisting of zeroes. Substituting (3.8) and (3.12) 
into (3.2) and using the fact that &$I) is a column of independent parameters, we obtain 

(PTAP)q”(‘) = PT (B - AQ) (3.13) 

Equations (3.13), together with the equations of constraints (3.10), are a system of 
(r + d) first order equations of motion in p q’(l) which can be written as follows: 

+ pqw, A$!_ = (PTAP)-‘PT (B - AQ) (3.14) 

The initial conditions for q satisfy the equations of constraints (2.3) and (2.4). The 
initial conditions for q+) can be chosen arbitrarily. 

The number of equations (3.14) is not the smallest possible (2d), but after integrationwe 
obtain at once the complete information about not only the global behavior of the system, but 
also about the relative motion in any hinge. 

Ordinarily, in investigating the dynamics of specific engineering systems not only is 
information about the changes in the independent coordinates q(r) essential for the design and 
control, but also information about a whole set of parameters cl. That fact must be taken in- 
to account, that only the number of degrees of freedom of the system is invariant, while the 
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vector of the generalized coordinates $I) is not determined uniquely. There is definite a&it 
rariness in its selection, which is governed by the fact that the rank of the matrix K canbe 
xealised by different minors. Moreover, the matrix K itself has a different form for differ- 
ent methods of transforming the system with closed chains into a system with the structure of 

a tree. The form of the matrix K depends also on the selection of the coordinate systems for 
the projection of the vector equalities (3.4). 
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